无忧雅思网_雅思预测_雅思机经_雅思考试_雅思资料下载_雅思名师_2018年雅思考试时间

SAT2化学练习:Protein Synthesis

  下面无忧小编为大家整理了关于SAT2化学练习:Protein Synthesis的介绍,希望对大家有所帮助。

  Now that we’ve described DNA and RNA, it’s time to take a look at the process of protein synthesis. The synthesis of proteins takes two steps: transcription and translation. Transcription takes the information encoded in DNA and encodes it into mRNA, which heads out of the cell’s nucleus and into the cytoplasm. During translation, the mRNA works with a ribosome and tRNA to synthesize proteins.

  

SAT2化学知识讲解:Protein Synthesis

 

  Transcription

  The first step in transcription is the partial unwinding of the DNA molecule so that the portion of DNA that codes for the needed protein can be transcribed. Once the DNA molecule is unwound at the correct location, an enzyme called RNA polymerase helps line up nucleotides to create acomplementary strand of mRNA. Since mRNA is a single-stranded molecule, only one of the two strands of DNA is used as a template for the new RNA strand.

  

SAT2化学知识讲解:Protein Synthesis

 

  The new strand of RNA is made according to the rules of base pairing:

  DNA cytosine pairs with RNA guanine

  DNA guanine pairs with RNA cytosine

  DNA thymine pairs with RNA adenine

  DNA adenine pairs with RNA uracil

  For example, the mRNA complement to the DNA sequence TTGCAC is AACGUG. The SAT II Biology frequently asks about the sequence of mRNA that will be produced from a given sequence of DNA. For these questions, don’t forget that RNA uses uracil in place of thymine.

  After transcription, the new RNA strand is released and the two unzipped DNA strands bind together again to form the double helix. Because the DNA template remains unchanged after transcription, it is possible to transcribe another identical molecule of RNA immediately after the first one is complete. A single gene on a DNA strand can produce enough RNA to make thousands of copies of the same protein in a very short time.

  Translation

  In translation, mRNA is sent to the cytoplasm, where it bonds with ribosomes, the sites of protein synthesis. Ribosomes have three important binding sites: one for mRNA and two for tRNA. The two tRNA sites are labeled the A site and P site.

  

SAT2化学知识讲解:Protein Synthesis

 

  Once the mRNA is in place, tRNA molecules, each associated with specific amino acids, bind to the ribosome in a sequence defined by the mRNA code. tRNA molecules can perform this function because of their special structure. tRNA is made up of many nucleotides that bend into the shape of a cloverleaf. At its tail end, tRNA has an acceptor stem that attaches to a specific amino acid. At its head, tRNA has three nucleotides that make up an anticodon.

  

SAT2化学知识讲解:Protein Synthesis

 

  An anticodon pairs complementary nitrogenous bases with mRNA. For example if mRNA has a codon AUC, it will pair with tRNA’s anticodon sequence UAG. tRNA molecules with the same anticodon sequence will always carry the same amino acids, ensuring the consistency of the proteins coded for in DNA.

  The Process of Translation

  Translation begins with the binding of the mRNA chain to the ribosome. The first codon, which is always the start codon methionine, fills the P site and the second codon fills the A site. The tRNA molecule whose anticodon is complementary to the mRNA forms a temporary base pair with the mRNA in the A site. A peptide bond is formed between the amino acid attached to the tRNA in the A site and the methionine in the P site.

  

SAT2化学知识讲解:Protein Synthesis

 

  The ribosome now slides down the mRNA, so that the tRNA in the A site moves over to the P site, and a new codon fills the A site. (One way to remember this is that the A site brings new amino acids to the growing polypeptide at the P site.) The appropriate tRNA carrying the appropriate amino acid pairs bases with this new codon in the A site. A peptide bond is formed between the two adjacent amino acids held by tRNA molecules, forming the first two links of a chain.

  

SAT2化学知识讲解:Protein Synthesis

 

  The ribosome slides again. The tRNA that was in the P site is let go into the cytoplasm, where it will eventually bind with another amino acid. Another tRNA comes to bind with the new codon in the A site, and a peptide bond is formed between the new amino acid to the growing peptide chain.

  

SAT2化学知识讲解:Protein Synthesis

 

  The process continues until one of the three stop codons enters the A site. At that point, the protein chain connected to the tRNA in the P site is released. Translation is complete.

  以上就是关于SAT2化学练习:Protein Synthesis的介绍,想要了解更多关于“SAT2化学考试”的信息,请拨打免费留学培训热线:400-680-5851,或者直接点击网页上的“在线咨询”,与我们的无忧培训专家一对一沟通交流!